Пара сил. Пара сил и ее свойства Механическая пара сил

Парой сил (или просто парой) называется совокупность двух параллельных сил, равных по модулю, противоположных по направлению и приложенных в разных точках тела (рис. 30). Пару сил будем обозначать символом . Силы называются силами пары; плоскость, в которой лежат силы, называется плоскостью действия пары.

Кратчайшее расстояние между линиями действия сил пары называется плечом пары (длина h отрезка АВ на рис.

30). Так как силы можно перемещать вдоль их линий действия, в дальнейшем силы пары будем изображать приложенными к концам плеча пары.

Будем также пользоваться более простым обозначением пары в виде , не содержащем обозначений точек приложения сил.

Пара сил характеризует особый вид взаимодействия тел, который нельзя выразить одной силой. Поэтому в статике, наряду с силами, рассматриваются отдельно также пары сил с их специфическими свойствами, правилами сложения и условиями равновесия.

Изначально пара сил задается четырьмя векторами (рис. 31.)-двумя векторами сил пары и двумя радиусами-векторами их точек приложения. Возьмем какую-либо точку пространства в качестве центра моментов О и вычислим моменты сил пары относительно этого центра

Тогда предыдущее утверждение можно выразить и в такой форме: пара сил может быть задана векторами сил пары и моментами этих сил относительно произвольного центра О. Теперь зададимся вопросом: нельзя ли пару сил задавать по-другому, желательно меньшим числом определяющих элементов?

Геометрическая сумма векторов сил пары всегда равна нулю, поэтому она не может использоваться для характеристики пары. Вычислим сумму моментов сил пары относительно точки О:

В полученном результате обращают на себя внимание два обстоятельства.

1. В то время как сумма векторов сил пары всегда равна нулю, сумма моментов сил пары отлична от нуля.

2. Сумма моментов сил пары не зависит от выбора центра моментов- векторы зависящие от выбора точки О, выпали из окончательного выражения для искомой суммы.

Таким образом, сумма моментов сил пары оказывается зависящей только от элементов самой пары - плоскости действия пары, модуля сил и плеча пары. Это наводит на мысль использовать эту величину в качестве характеристики пары сил. В дальнейшем сумму моментов сил пары будем называть моментом этой пары. Поскольку момент пары не зависит от выбора центра моментов, то он является свободным вектором - его можно прикладывать в любой точке твердого тела, на которое действует данная пара сил.

Итак, на вопрос о том, можно ли задавать пару сил более простым способом, получен утвердительный ответ: пару сил можно характеризовать, задавая лишь один вектор - момент пары. Моментом пары сил называется свободный вектор , равный геометрической сумме моментов сил пары относительно произвольно выбранной точки О пространства

Здесь следует заметить, что приведенные рассуждения имеют скорее наводящий характер и не являются строгим доказательством только что сформулированного вывода. Однако в статике имеется ряд теорем, в которыхсделанный вывод получает строгое обоснование. С этими теоремами можно познакомиться по полным учебникам по теоретической механике.

Воспользовавшись произволом в выборе точки О в определении момента пары, можно прийти к более простому способу вычисления момента. Примем в качестве центра моментов точку приложения силы -F (точку В на рис. 31). Тогда можно написать

Здесь учтено, что так как сила -F проходит через точку В. Если за центр моментов принять точку А, в которой приложена сила F, то в нуль обращается момент силы F, и мы получаем

Это приводит к еще одному правилу для вычисления момента пары: момент пары сил равен моменту одной из сил пары относительно точки приложения другой силы.

Тем самым определение момента пары сводится к вычислению и построению момента силы относительно точки, подобно рассмотренному ранее (см. стр. 12).

В итоге приходим к следующему выводу: момент пары сил есть вектор, численно равный произведению модуля сил пары на плечо пары и направленный перпендикулярно плоскости действия пары в ту сторону, из которой "вращение" пары видно происходящим против движения часовой стрелки (правило буравчика); в качестве точки приложения момента пары может быть взята любая точка тела.

Алгебраическим моментом пары называется произведение модуля сил пары на плечо пары, взятое со знаком плюс, если пара "вращает" свою плоскость против движения часовой стрелки, и со знаком минус, если наоборот.

На рис. 32 изображена пара сил , действующая в плоскости диска радиуса R, установленного перпендикулярно к оси вращения. Плечо пары равно диаметру диска, модуль момента пары равен

Момент пары направлен перпендикулярно плоскости диска и может быть приложен в любой точке диска.

На рис. 33 показан аналогичный случай, но изображенный в плоской проекции. Здесь силы пары () направлены перпендикулярно плоскости чертежа (знаком изображаются векторы, направленные , знаком - от читателя). Момент пары по модулю равен , перпендикулярен плоскости диска и лежит в плоскости чертежа (точнее, может быть перенесен параллельно себе в плоскость чертежа).

Еще два примера построения момента пары содержатся на рис. 34. Модули моментов изображенных пар имеют значения:

Векторы-моменты пар имеют проекции:

Свойства пары сил

1. Можно изменять величину сил и плечо пары, оставляя без изменения величину момента и направление "вращения" сил пары.

2. Пару сил можно как угодно перемещать в своей плоскости действия.

3. Пару сил можно перемещать параллельно себе в любую плоскость, неизменно связанную с телом, к которому она приложена.

Перечисленные в этих свойствах действия не изменяют ни величину, ни направление момента пары, поэтому являются эквивалентными преобразованиями пары.

В приведенных выше примерах речь шла о построении момента по заданным элементам пары - плоскости действия, силам и плечу пары. Можно ставить и обратную задачу - построить пару сил по ее моменту. Пусть требуется построить пару сил по ее моменту М (рис. 35, а). Для этого строим плоскость П, перпендикулярную линии действия момента (рис. 35, б). Эта плоскость будет служить плоскостью действия пары. В этой плоскости располагаем две силы

Парой сил называется система двух равных по модулю, параллельных и направленных в противоположные стороны сил, действующих на твердое тело (рис. 17).

Плоскость , содержащая линии действия сил пары и называется плоскостью действия сил пары . Кратчайшее расстояние между линиями действия сил пары называется плечом пары .

Вращающее действие пары на твердое тело зависит от модуля сил пары , плеча , положения плоскости действия пары и направления вращения.

Мерой этого действие пары является ее вектор-момент . Если все силы и пары, приложенные к телу, лежат в одной плоскости, то момент пары можно рассматривать как алгебраическую величину, равную

Момент пары считается положительным , если он стремиться вращать тело против хода часовой стрелки и отрицательным , если - по ходу часовой стрелки.

Момент пары, как и момент силы, измеряется в (система СИ) и в (система МКГСС).

Алгебраическая сумма моментов сил пары относительно произвольной точки в плоскости ее действия не зависит от выбора этой точки и равна моменту пары. Действительно, определим сумму моментов сил и пары (рис. 18) относительно произвольной точки , расположенной в плоскости действия пары.

Так как , то получим:

Если силы и пары, приложенные к телу, лежат в разных плоскостях, то момент пары, как и момент силы, необходимо рассматривать как вектор. Вводим в связи с этим общее определение момента пары.

Моментом пары является вектор , равный по модулю произведению модуля сил пары на ее плечо и направленный перпендикулярно плоскости ее действия в ту сторону, откуда поворот, который пара стремится сообщить телу, виден происходящим в направлении против хода часовой стрелки (рис. 17).

Модуль вектора равен

Из определения векторов и следует, что момент пары (рис. 17) равен по модулю и направлению моменту любой из сил пары (например, ) относительно точки приложения другой, то есть

Используя формулу 16, имеем:

Таким образом, момент пары можно представить в виде векторного произведения (23), в котором – радиус-вектор точки приложения силы относительно точки приложения силы (рис.17).

Свойства пар выражаются следующими теоремами, которые приводятся здесь без доказательств.

1) Действие пары на твердое тело не изменится, если перенести пару в плоскости ее действия в любое другое положение.

2) Действие пары на твердое тело не изменится, если модуль сил пары и ее плечо изменить так, чтобы модуль момента пары сохранился неизменным.

3) Действие пары на твердое тело не изменится, если перенести пару в любую другую плоскость, параллельную плоскости ее действия.


4) Система пар, приложенных к твердому телу, может быть заменена одной результирующей парой с моментом , равным геометрической сумме моментов слагаемых пар:

Из теорем следует, что пару, выраженную вектором , в твердом теле можно как угодно перенести в плоскости действия пары, а также перенести в любую параллельную плоскость; поэтому момент пары является свободным вектором , т.е. его можно изобразить приложенным в любой точке твердого тела.

Вопросы для самопроверки к разделу 2

1. Определить момент силы относительно точки как алгебраическую величину, как вектор.

2. В каком случае момент силы относительно точки равен нулю?

3. Что называется моментом силы относительно оси?

4. В каких случаях момент силы относительно оси равен нулю?

5. Можно ли открыть дверь, если все приложенные к ней силы располагаются в плоскости двери?

6. Какова зависимость между моментами силы относительно оси и относительно точки, лежащей на этой оси?

7. Выведите формулы для моментов силы относительно трех координатных осей, используя представление о векторе момента силы относительно точки в виде векторного произведения.

8. Что называется парой сил? Чему равен момент пары?

9. Какие факторы определяют действие пары на твердое тело?

10. Как направлен, где приложен вектор момента пары?

11. Сформулируйте условие равновесия системы пар сил, приложенных к твердому телу.

12. Могут ли уравновесить друг друга две пары сил, лежащие в параллельных плоскостях; в пересекающихся плоскостях?

13. Каким образом можно изменять плечо и модуль сил пары, не изменяя действие пары на твердое тело?

14. Как складываются пары, лежащие в одной плоскости; в пересекающихся плоскостях?

Рис.37

1. Изображение момента вектором. Момент силы относительно центра О (см. рис. 37) как характеристика ее враща­тельного эффекта определяется следую­щими тремя элементами:

1) модулем мо­мента, равным произведению модуля силы на плечо, т. е. ; 2) плоскостью поворота ОАВ, проходящей через линию действия силы и центр О; 3) напра­влением поворота в этой плоскости. Когда все силы и центр О лежат в одной пло­скости, необходимость задавать каждый раз плоскость поворота ОАВ отпадает, и момент можно определять как скаляр­ную алгебраическую величину, равную , где знак указывает направление поворота.

Но в случае сил, произвольно расположенных в пространстве, плоскости поворота у разных сил будут разными и должны задаваться дополнительно. Положение плоскости в пространстве можно задать, задав отрезок (вектор), перпендикулярный к этой плоскости. Если одновременно модуль этого вектора выбрать равным модулю момента силы и условиться направлять этот вектор так, чтобы его направление определяло направление поворота силы, то такой вектор полностью определит все три элемента, характеризующие момент данной силы относительно центра О.

Поэтому в общем случае момент ) силы относительно центра О (рис. 37) будем изображать приложенным в центре О вектором , равным по модулю (в выбранном масштабе) произ­ведению модуля силы на плечо h и перпендикулярным к пло­скости ОАВ, проходящей через центр О и силу . Направлять вектор будем в ту сторону, откуда поворот, совершаемый силой, виден происходящим против хода часовой стрелки. Таким образом, вектор будет одновременно характеризовать модуль момента, плоскость поворота ОАВ, разную для разных сил, и направление поворота в этой плоскости. Точка приложения вектора определяет положение центра момента.

2. Выражение момента силы с помощью вектор­ного произведения. Рассмотрим векторное произведение x векторов и (рис. 37). По определению, ,

так как модуль вектора тоже равен 2 пл. . Направлен вектор (x ) перпендикулярно к плоскости ОАВ , в ту сторону, откуда кратчайшее совмещение с (если их отложить от одной точки) видно против хода часовой стрелки, т. е., так же, как век­тор . Следовательно, векторы (x ) и совпадают и по модулю и по направлению и, как легко проверить, по размерности, т. е. оба эти вектора изображают одну и ту же величину. Отсюда

где вектор = называется радиусом-вектором точки А относи­тельно центра О .

Таким образом, момент силы относительно центра О равен векторному произведению радиуса вектора , соединяющего центр О с точкой приложения силы А , на саму силу. Этим вы­ражением момента силы бывает удобно пользоваться при доказатель­стве некоторых теорем.


Действие пары сил на тело характеризуется: 1) величиной модуля момента пары, 2) плоскостью действия, 3) направлением поворота в этой плоскости. При рассмот­рении пар, не лежащих в одной плоскости, для характеристики каж­дой из пар необходимо бу­дет задать все эти три эле­мента. Это можно сделать, если условиться, по аналогии с моментом силы, изображать момент пары соответствую­щим образом, построенным вектором, а именно: будем изображать момент пары вектором т илиМ, мо­дуль которого равен (в выбранном масштабе) модулю момента пары, т.е. произведению одной из ее сил на плечо, и который направлен перпендикулярно плоскости действия пары в ту сто­рону, откуда поворот пары виден происходящим против хода часовой стрелки (рис. 38).

Парой сил называется система двух сил, равных по модулю, параллельных и направлен­ных в разные стороны.

Рассмотрим систему сил (Р; Б"), образую­щих пару.

Пара сил вызывает вращение тела и ее дей­ствие на тело оценивается моментом. Силы, входящие в пару, не уравновешиваются, т. к. они приложены к двум точкам (рис. 4.1).

Их действие на тело не может быть заменено од­ной силой (равнодействующей).

Момент пары сил численно равен произве­дению модуля силы на расстояние между лини­ями действия сил (плечо пары).

Момент считают положительным, если па­ра вращает тело по часовой стрелке (рис. 4.1(б)):

М(F;F") = Fa ; М > 0.

Плоскость, проходящая через линии дей­ствия сил пары, называется плоскостью действия пары.

Свойства пар (без доказательств):

1. Пару сил можно перемещать в плоскости ее действия.

2. Эквивалентность пар.

Две пары, моменты которых равны, (рис. 4.2) эквивалентны (действие их на тело аналогично).

3. Сложение пар сил. Систему пар сил можно заменить равно­действующей парой.

Момент равнодействующей пары равен алгебраической сумме моментов пар, составляющих систему (рис. 4.3):

4. Равновесие пар.

Для равновесия пар необходимо и достаточно, чтобы алгебраи­ческая сумма моментов пар системы равнялась нулю:

Конец работы -

Эта тема принадлежит разделу:

Теоретическая механика

Теоретическая механика.. лекция.. тема основные понятия и аксиомы статики..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Задачи теоретической механики
Теоретическая механика - наука о механическом движении материальных твердых тел и их взаимодействии. Механическое дви­жение понимается как перемещение тела в пространстве и во време­ни по от

Третья аксиома
Не нарушая механического состояния тела, можно добавить или убрать уравновешенную систему сил (принцип отбрасывания систе­мы сил, эквивалентной нулю) (рис. 1.3). Р,=Р2 Р,=Р.

Следствие из второй и третьей аксиом
Силу, действующую на твер­дое тело, можно перемещать вдоль линии ее действия (рис. 1.6).

Связи и реакции связей
Все законы и теоремы статики справедливы для свободного твердого тела. Все тела делятся на свободные и связанные. Свободные тела - тела, перемещение которых не ограничено.

Жесткий стержень
На схемах стержни изображают толсто сплошной линией (рис. 1.9). Стержень може

Неподвижный шарнир
Точка крепления пере­мещаться не может. Стер­жень может свободно повора­чиваться вокруг оси шарни­ра. Реакция такой опоры про­ходит через ось шарнира, но

Плоская система сходящихся сил
Система сил, линии действия которых пе­ресекаются в одной точке, называется сходя­щейся (рис. 2.1).

Равнодействующая сходящихся сил
Равнодействующую двух пересекающихся сил можно опреде­лить с помощью параллелограмма или треугольника сил (4-я ак­сиома) (вис. 2.2).

Условие равновесия плоской системы сходящихся сил
При равновесии системы сил равнодействующая должна быть равна нулю, следовательно, при геометрическом построении конец последнего вектора должен совпасть с началом первого. Если

Решение задач на равновесие геометрическим способом
Геометрическим способом удобно пользоваться, если в системе три силы. При решении задач на равновесие тело считать абсолютно твердым (отвердевшим). Порядок решения задач:

Решение
1. Усилия, возникающие в стержнях крепления, по величине равны силам, с которыми стержни поддерживают груз (5-я аксиома статики) (рис. 2.5а). Определяем возможные направления реакций связе

Проекция силы на ось
Проекция силы на ось определяется отрезком оси, отсекаемым перпендикулярами, опущенными на ось из начала и конца вектора (рис. 3.1).

Сил аналитическим способом
Величина равнодействующей равна векторной (геометрической) сумме векторов системы сил. Определяем равнодействующую геоме­трическим способом. Выберем систему координат, определим про­екции всех зада

Сходящихся сил в аналитической форме
Исходя из того, что равнодействующая равна нулю, получим: Усл

Момент силы относительно точки
Сила, не проходящая через точку крепления тела, вызывает вра­щение тела относительно точки, поэтому действие такой силы на тело оценивается моментом. Момент силы отн

Теорема Пуансо о параллельном переносе сил
Силу можно перенести параллельно линии ее действия, при этом нужно добавить пару сил с моментом, равным произведению модуля силы на расстояние, на которое перенесена сила.

Расположенных сил
Линии действия произвольной системы сил не пересекаются в одной точке, поэтому для оценки состояния тела такую систему следует упростить. Для этого все силы системы переносят в одну произ­вольно вы

Влияние точки приведения
Точка приведения выбрана произвольно. При изменении поло­жения точки приведения величина главного вектора не изменится. Величина главного момента при переносе точки приведения из­менится,

Плоской системы сил
1. При равновесии главный вектор системы равен нулю. Аналитическое определение главного вектора приводит к выводу:

Виды нагрузок
По способу приложения нагрузки делятся на сосредоточенные и распределенные. Если реально передача нагрузки происходит на пренебрежимо малой площадке (в точке), нагрузку называют сосре­доточенной

Момент силы относительно оси
Момент силы относительно оси равен моменту проекции силы на плоскость, перпендикулярную оси, относительно точки пересечения оси с плоскостью (рис. 7.1 а). MOO

Вектор в пространстве
В пространстве вектор силы проецируется на три взаимно пер­пендикулярные оси координат. Проекции вектора образуют ребра прямоугольного параллелепипеда, век­тор силы совпадает с диагональю (рис. 7.2

Пространственная сходящаяся система сил
Пространственная сходящаяся система сил - система сил, не лежащих в одной плоскости, линии действия которых пересе­каются в одной точке. Равнодействующую пространственной системы си

Приведение произвольной пространственной системы сил к центру О
Дана пространственная система сил (рис. 7.5а). Приведем ее к центру О. Силы необходимо параллельно перемещать, при этом образует­ся система пар сил. Момент каждой из этих пар равен

Центр тяжести однородных плоских тел
(плоских фигур) Очень часто приходится определять центр тяжести различных плоских тел и геометрических плоских фигур сложной формы. Для плоских тел можно записать: V =

Определение координат центра тяжести плоских фигур
Примечание. Центр тяжести симметричной фигуры находится на оси симметрии. Центр тяжести стержня находится на середине высоты. Поло­жения центров тяжести простых геометрических фигур могут

Кинематика точки
Иметь представление о пространстве, времени, траектории, пути, скорости и ускорении.Знать способы задания движения точки (естественный и координатный). Знать обозначения, едини

Пройденный путь
Путь измеряется вдоль траектории в направлении движения. Обозначение - S, единицы измерения - метры. Уравнение движения точки: Уравнение, определяющ

Скорость движения
Векторная величина, характеризующая в данный момент бы­строту и направление движения по траектории, называется скоро­стью. Скорость - вектор, в любой момент направленный по к

Ускорение точки
Векторная величина, характеризующая быстроту изменения скорости по величине и направлению, называется ускорением точки. Скорость точки при перемещении из точки М1

Равномерное движение
Равномерное движение - это движение с постоянной скоро­стью: v = const. Для прямолинейного равномерного движения (рис. 10.1 а)

Равнопеременное движение
Равнопеременное движение - это движение с постоянным ка­сательным ускорением: at = const. Для прямолинейного равнопеременного движения

Поступательное движение
Поступательным называют такое движение твердого тела, при котором всякая прямая линия на теле при движении остается парал­лельной своему начальному положению (рис. 11.1, 11.2). При

Вращательное движение
При вращательном движении все точки тела описывают окруж­ности вокруг общей неподвижной оси. Неподвижная ось, вокруг которой вращаются все точки тела, называется осью вращения.

Частные случаи вращательного движения
Равномерное вращение (угловая скорость постоянна): ω =const Уравнение (закон) равномерного вращения в данном случае име­ет вид:

Скорости и ускорения точек вращающегося тела
Тело вращается вокруг точки О. Определим параметры дви­жения точки A , расположенной на расстоянии RA от оси вращения (рис. 11.6, 11.7). Путь

Решение
1. Участок 1 - неравномерное ускоренное движение, ω = φ’ ; ε = ω’ 2. Участок 2 - скорость постоянна - движение равномерное, . ω = const 3.

Основные определения
Сложным движением считают движение, которое можно разло­жить на несколько простых. Простыми движениями считают посту­пательное и вращательное. Для рассмотрения сложного движения точ

Плоскопараллельное движение твердого тела
Плоскопараллельным, или плоским, называется такое движение твердого тела, при котором все точки тела перемещаются парал­лельно некоторой неподвижной в рассматриваемой системе отсчета

Поступа­тельное и вращательное
Плоскопараллельное движение раскладывают на два движения: поступательное вместе с некоторым полюсом и вращательное от­носительно этого полюса. Разложение используют для опред

Центра скоростей
Скорость любой точки тела можно определять с помощью мгновенного центра скоростей. При этом сложное движение пред­ставляют в виде цепи вращений вокруг разных центров. Задача

Аксиомы динамики
Законы динамики обобщают результаты многочисленных опытов и наблюдений. Законы динамики, которые принято рассматривать как аксиомы, были сформулированы Ньютоном, но первый и четвертый законы были и

Понятие о трении. Виды трения
Трение - сопротивление, возникающее при движении одного шероховатого тела по поверхности другого. При скольжении тел воз­никает трение скольжения, при качении - трение качения. Природа сопро

Трение качения
Сопротивление при качении связано с взаимной деформацией грунта и колеса и значительно меньше трения скольжения. Обычно считают грунт мягче колеса, тогда в основном дефор­мируется грунт, и

Свободная и несвободная точки
Материальная точка, движение которой в пространстве не огра­ничено какими-нибудь связями, называется свободной. Задачи реша­ются с помощью основного закона динамики. Материальные то

Сила инерции
Инертность - способность сохранять свое состояние неизмен­ным, это внутреннее свойство всех материальных тел. Сила инерции - сила, возникающая при разгоне или торможе­нии тел

Решение
Активные силы: движущая сила, сила трения, сила тяжести. Ре­акция в опоре R. Прикладываем силу инерции в обратную от ускоре­ния сторону. По принципу Даламбера, система сил, действующих на платформу

Работа равнодействующей силы
Под действием системы сил точка массой т перемещается из положения М1 в положение M 2 (рис. 15.7). В случае движения под действием системы сил пользуютс

Мощность
Для характеристики работоспособности и быстроты соверше­ния работы введено понятие мощности. Мощность - работа, выполненная в единицу времени:

Мощность при вращении
Рис. 16.2 Тело движется по дуге радиуса из точки М1 в точку М2 М1М2 = φr Работа силы

Коэффициент полезного действия
Каждая машина и механизм, совершая работу, тратит часть энергии на преодоление вредных сопротивлений. Таким образом, машина (механизм) кроме полезной работы совершает еще и дополнитель

Теорема об изменении количества движения
Количеством движения материальной точки называется векторная величина, равная произведению массы точки на ее скорость mv. Вектор количества движения совпадает по

Теорема об изменении кинетической энергии
Энергией называется способность тела совершать механиче­скую работу. Существуют две формы механической энергии: потенциальная энергия, или энергия положения, и кинетическая энергия,

Основы динамики системы материальных точек
Совокупность материальных точек, связанных между собой силами взаимодействия, называется механической системой. Любое материальное тело в механике рассматривается как механическая

Основное уравнение динамики вращающегося тела
Пусть твердое тело под действием внешних сил вращается во­круг оси Оz с угловой скоростью

Напряжения
Метод сечений позволяет определить величину внутреннего си­лового фактора в сечении, но не дает возможности установить за­кон распределения внутренних сил по сечению. Для оценки прочно­сти н

Внутренние силовые факторы, напряжения. Построение эпюр
Иметь представление о продольных силах, о нормальных на­пряжениях в поперечных сечениях. Знать правила построения эпюр продольных сил и нормальных напряжений, закон распределения

Продольных сил
Рассмотрим брус, нагруженный внешними силами вдоль оси. Брус закреплен в стене (закрепление «заделка») (рис. 20.2а). Делим брус на участки нагружения. Участком нагружения с

Геометрические характеристики плоских сечений
Иметь представление о физическом смысле и порядке опре­деления осевых, центробежных и полярных моментов инерции, о главных центральных осях и главных центральных моментах инерции.

Статический момент площади сечения
Рассмотрим произвольное сечение (рис. 25.1). Если разбить сечение на бесконечно малые площадки dA и умножить каждую площадку на расстояние до оси координат и проинтегрировать получе

Центробежный момент инерции
Центробежным моментом инерции сечения называется взятая ковсей площади сумма произведений элементарных площадок на обе координаты:

Осевые моменты инерции
Осевым моментом инерции сечения относительно некоторой реи, лежащей в этой же плоскости, называется взятая по всей пло­щади сумма произведений элементарных площадок на квадрат их расстояния

Полярный момент инерции сечения
Полярным моментом инерции сечения относительно некоторой точки (полюса) называется взятая по всей площади сумма произве­дений элементарных площадок на квадрат их расстояния до этой точки:

Моменты инерции простейших сечений
Осевые моменты инерции прямоугольника (рис. 25.2) Представим прямо

Полярный момент инерции круга
Для круга вначале вычисляют поляр­ный момент инерции, затем - осевые. Представим круг в виде совокупности бесконечно тонких колец (рис. 25.3).

Деформации при кручении
Кручение круглого бруса происходит при нагружении его па­рами сил с моментами в плоскостях, перпендикулярных продольной оси. При этом образующие бруса искривляются и разворачиваются на угол γ,

Гипотезы при кручении
1. Выполняется гипотеза плоских сечений: поперечное сечение бруса, плоское и перпен- дикулярное продольной оси, после деформацииостается плоским и перпендикулярным продольной оси.

Внутренние силовые факторы при кручении
Кручением называется нагружение, при котором в поперечном сечении бруса возникает только один внутренний силовой фактор - крутящий момент. Внешними нагрузками также являются две про

Эпюры крутящих моментов
Крутящие моменты могут меняться вдоль оси бруса. После определения величин моментов по сечениям строим график-эпюру крутящих моментов вдоль оси бруса.

Напряжения при кручении
Проводим на поверхности бру­са сетку из продольных и попе­речных линий и рассмотрим рису­нок, образовавшийся на поверхно­сти после Рис. 27.1а деформации (рис. 27.1а). Поп

Максимальные напряжения при кручении
Из формулы для определения напряжений и эпюры распределе­ния касательных напряжений при кручении видно, что максималь­ные напряжения возникают на поверхности. Определим максимальное напряж

Виды расчетов на прочность
Существует два вида расчета на прочность 1. Проектировочный расчет - определяется диаметр бруса (вала) в опасном сечении:

Расчет на жесткость
При расчете на жесткость определяется деформация и сравни­вается с допускаемой. Рассмотрим деформацию круглого бруса над действием внешней пары сил с моментом т (рис. 27.4).

Основные определения
Изгибом называется такой вид нагружения, при котором в по­перечном сечении бруса возникает внутренний силовой фактор -изгибающий момент. Брус, работающий на

Внутренние силовые факторы при изгибе
Пример 1.Рассмотрим балку, на которую действует пара сил с моментом т и внешняя сила F (рис. 29.3а). Для определения вну­тренних силовых факторов пользуемся методом с

Изгибающих моментов
Поперечная сила в сече­нии считается положитель­ной, если она стремится раз­вернуть се

Дифференциальные зависимости при прямом поперечном изгибе
Построение эпюр поперечных сил и изгибающих моментов су­щественно упрощается при использовании дифференциальных зави­симостей между изгибающим моментом, поперечной силой и интен­сивностью равномерн

Методом сечения Полученное выражение можно обобщить
Поперечная сила в рассматриваемом сечении равна алгебраической сумме всех сил, действующих на балку до рассматриваемого сечения: Q = ΣFi Поскольку речь идет

Напряжения
Рассмотрим изгиб балки, защемленной справа и нагруженной сосредоточенной силой F (рис. 33.1).

Напряженное состояние в точке
Напряженное состояние в точке характеризуется нормальны­ми и касательными напряжениями, возникающими на всех площад­ках (сечениях), проходящих через данную точку. Обычно достаточ­но определить напр

Понятие о сложном деформированном состоянии
Совокупность деформаций, возникающих по различным напра­влениям и в различных плоскостях, проходящих через точку, опре­деляют деформированное состояние в этой точке. Сложное деформи

Расчет круглого бруса на изгиб с кручением
В случае расчета круглого бруса при действии изгиба и кру­чения (рис. 34.3) необходимо учитывать нормальные и касательные напряжения, т. к. максимальные значения напряжений в обоих слу­чаях возника

Понятие об устойчивом и неустойчивом равновесии
Относительно короткие и массивные стержни рассчитывают на сжатие, т.к. они выходят из строя в результате разрушения или остаточных деформаций. Длинные стержни небольшого поперечного сечения под дей

Расчет на устойчивость
Расчет на устойчивость заключается в определении допускае­мой сжимающей силы и в сравнении с ней силы действующей:

Расчет по формуле Эйлера
Задачу определения критической силы математиче­ски решил Л. Эйлер в 1744 г. Для шарнирно закрепленного с обеих сторон стержня (рис. 36.2) формула Эйлера имеет вид

Критические напряжения
Критическое напряжение - напряжение сжатия, соответству­ющее критической силе. Напряжение от сжимающей силы определяется по формуле

Пределы применимости формулы Эйлера
Формула Эйлера выполняется только в пределах упругих де­формаций. Таким образом, критическое напряжение должно быть меньше предела упругости материала. Пред

Пара сил. Момент пары.

Парой сил (или просто парой) называются две силы, равные по ве­личине, параллельные и направленные в противоположные стороны (рис.22). Очевидно, и .

Рис.22

Несмотря на то, что сумма сил равна нулю, эти силы не уравновешиваются. Под действием этих сил, пары сил, тело начнёт вращаться. И вращательный эффект будет определяться моментом пары:

.

Расстояние a между линиями действия сил называется плечом пары .

Если пара вращает тело против часовой стрелки, момент её считается положительным (как на рис.22), если по часовой стрелке – отрицательным.

Для того, чтобы момент пары указывал и плоскость, в которой происходит вращение, его представляют вектором.

Вектор момента пары направляется перпендикулярно плоскости, в которой расположена пара, в такую сторону, что если посмотреть от­туда, увидим вращение тела против часовой стрелки (рис. 23).

Нетрудно доказать, что вектор мо­мента пары – есть вектор этого векторного произведения (рис. 23). И за­метим, что он равен вектору момента силы относительно точки А , точки приложения второй силы:

О точке приложения вектора бу­дет сказано ниже. Пока приложим его к точке А .

Рис.23

Свойства пар

1) Проекция пары на любую ось равна нулю. Это следует из определения пары сил.

2) Найдём сумму моментов сил и составляющих пару, относительно какой-либо точки О (рис.24).

Рис.24

Покажем радиусы-векторы точек А 1 и А 2 и вектор , соединяющий эти точки. Тогда момент пары сил относительно точки О

Но . Поэтому .

Значит .

Момент пары сил относительно любой точки равен моменту этой пары.

Отсюда следует, что, во-первых, где бы не находилась точка О и, во-вторых, где бы не располагалась эта пара в теле и как бы она не была повёрнута в своей плоскости, действие её на тело будет одинаково. Так как момент сил, составляющих пару, в этих случаях один и тот же, рав­ный моменту этой пары .

Поэтому можно сформулировать ещё два свойства.

3) Пару можно перемещать в пределах тела по плоскости действия и переносить в любую другую параллельную плоскость.



4) Так как действие на тело сил, составляющих пару, определяется лишь её моментом, произведением одной из сил на плечо, то у пары можно изменять силы и плечо, но так, чтобы момент пары остался прежним. Например, при силах F 1 =F 2 = 5 H и плече а = 4 см момент пары m = 20 H×см. Можно силы сделать равными 2 Н, а плечо а = 10 см. При этом момент останется прежним 20 Нсм и действие пары на тело не из­менится.

Все эти свойства можно объединить и, как следствие, сделать вы­вод, что пары с одинаковым вектором момента и неважно где расположенные на теле, оказывают на него равное действие. То есть такие пары эквивалентны.

Исходя из этого, на расчётных схемах пару изображают в виде дуги со стрелкой, указывающей направление вращения, и рядом пишут величину момента m . Или, если это пространственная конструкция, по­казывают только вектор момента этой пары. И вектор момента пары можно прикладывать к любой точке тела. Значит вектор момента пары – свободный вектор.

И ещё одно дополнительное замечание. Так как момент пары ра­вен вектору момента одной из сил её относительно точки приложения второй силы, то момент пары сил относительно какой-либо оси z – есть проекция вектора момента пары на эту ось:

где – угол между вектором и осью z .